

Centre d'Information Pharmaceutique - Recommandations d'utilisation

Info Pharmaceutique: N° tél. interne 31080

# UNITÉS, CONVERSIONS, EQUIVALENTS & CALCULS DE DOSES

| >                                                          | FORMULE DE CONVERSION ION                                                                                                                                                                                 |       | ONS MONOVALENTS                                                                                                                                                                                                             |  | IONS BIVALENTS                                                                                                                                                                                                                                           |  | ION TRIVALENT                                                                                                                                                               |  |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DES PRINCIPAUX ELECTROLYTES IV<br>nol = unité de référence | mmol= milliéquivalent (mEq) valence de l'ion                                                                                                                                                              | 1 mmo | I HCO <sub>3</sub> - = 1 mEq HCO <sub>3</sub> -<br>I H <sub>2</sub> PO <sub>4</sub> - = 1 mEq H <sub>2</sub> PO <sub>4</sub> -<br>nmol K <sup>+</sup> = 1 mEq K <sup>+</sup><br>mol Na <sup>+</sup> = 1 mEq Na <sup>+</sup> |  | 1 mmol Ca <sup>2+</sup> = 2 mEq Ca <sup>2+</sup><br>1 mmol Mg <sup>2+</sup> = 2 mEq Mg <sup>2+</sup>                                                                                                                                                     |  | 1 mmol PO <sub>4</sub> <sup>3-</sup> = 3 mEq PO <sub>4</sub> <sup>3-</sup>                                                                                                  |  |
|                                                            | Présentations disponibles aux HUG                                                                                                                                                                         |       | Masse de substance<br>par amp. / flex                                                                                                                                                                                       |  | Quantité em mmol d'ions<br>par amp. / flex                                                                                                                                                                                                               |  | Concentration<br>en mmol / mL                                                                                                                                               |  |
|                                                            | BICARBONATE sodium 1.4%; 14 g/L (50 mL) BICARBONATE sodium 1.4%; 14 g/L (500 mL) BICARBONATE sodium 4.2%; 42 g/L (20 mL) BICARBONATE sodium 8.4%; 84 g/L (20 mL) BICARBONATE sodium 8.4%; 84 g/L (100 mL) |       | 0.7 g de NaHCO <sub>3</sub><br>7 g de NaHCO <sub>3</sub><br>0.84 g de NaHCO <sub>3</sub><br>1.68 g de NaHCO <sub>3</sub><br>8.4 g de NaHCO <sub>3</sub>                                                                     |  | 50 mL = 8.35 mmol HCO <sub>3</sub> <sup>-</sup><br>500 mL = 83.5 mmol HCO <sub>3</sub> <sup>-</sup><br>20 mL = 10 mmol HCO <sub>3</sub> <sup>-</sup><br>20 mL = 20 mmol HCO <sub>3</sub> <sup>-</sup><br>100 mL = 100 mmol HCO <sub>3</sub> <sup>-</sup> |  | 0.167 mmol HCO <sub>3</sub> -/ mL<br>0.167 mmol HCO <sub>3</sub> -/ mL<br>0.5 mmol HCO <sub>3</sub> -/ mL<br>1 mmol HCO <sub>3</sub> -/ mL<br>1 mmol HCO <sub>3</sub> -/ mL |  |
|                                                            | CALCIUM chlorure HUG 7.5%; 75 g/L (20 mL)                                                                                                                                                                 |       | 1.5 g de CaCl₂·2H₂O<br>1.0 g de Ca gluconate                                                                                                                                                                                |  | 20 mL = 10 mmol Ca <sup>2+</sup><br>10 mL = 2.25 mmol Ca <sup>2+</sup>                                                                                                                                                                                   |  | 0.5 mmol Ca <sup>2+</sup> / mL<br>0.225 mmol Ca <sup>2+</sup> / mL                                                                                                          |  |
|                                                            | CALCIUM Gluconat 10%; 100 g/L (10 mL)  MAGNESIUM sulfate 10%; 100 g/L (20 mL)  MAGNESIUM sulfate 20%; 200 g/L (20 mL)  MAGNESIUM sulfate 50%; 500 g/L (10 mL)                                             |       | 2 g de MgSO <sub>4</sub> ·7H <sub>2</sub> O<br>4 g de MgSO <sub>4</sub> ·7H <sub>2</sub> O<br>5 g de MgSO <sub>4</sub> ·7H <sub>2</sub> O                                                                                   |  | 20 mL = 8 mmol Mg <sup>2+</sup><br>20 mL = 16 mmol Mg <sup>2+</sup><br>10 mL = 20 mmol Mg <sup>2+</sup>                                                                                                                                                  |  | 0.4 mmol Mg <sup>2+</sup> / mL<br>0.8 mmol Mg <sup>2+</sup> / mL<br>2.0 mmol Mg <sup>2+</sup> / mL                                                                          |  |
| _                                                          | PHOSPHATE sodium 15.6%; 156 g/L (50 mL)                                                                                                                                                                   |       | 7.8 g de NaH₂PO₄·2H₂O                                                                                                                                                                                                       |  | 50 mL = 50 mmol PO <sub>4</sub> <sup>3-</sup>                                                                                                                                                                                                            |  | 1 mmol PO <sub>4</sub> 3-/ mL                                                                                                                                               |  |
| CES<br>B                                                   | PHOSPHATE potassium 13.6%; 136 g/L (10 mL) Kaliumphosphat 1 molaire B. Braun                                                                                                                              |       | 1.36 g de KH₂PO₄                                                                                                                                                                                                            |  | 10 mL = 10 mmol H <sub>2</sub> PO <sub>4</sub> -                                                                                                                                                                                                         |  | 1 mmol H₂PO₄⁻/ mL                                                                                                                                                           |  |
| ALEN                                                       | POTASSIUM chlorure (KCI) flex 40 mmol/L (500 mL) POTASSIUM chlorure (KCI) flex 80 mmol/L (500 mL)                                                                                                         |       | 1.5 g de KCl<br>3 g de KCl                                                                                                                                                                                                  |  | 500 mL = 20 mmol K <sup>+</sup><br>500 mL = 40 mmol K <sup>+</sup>                                                                                                                                                                                       |  | 0.04 mmol K <sup>+</sup> / mL<br>0.08 mmol K <sup>+</sup> / mL                                                                                                              |  |
| EQUIVALENCES                                               | POTASSIUM chlorure (KCI) 7.5%; 75 g/L (20 mL)<br>POTASSIUM chlorure (KCI) 7.5%; 75 g/L (50 mL)                                                                                                            |       | 1.5 g de KCI<br>3.75 g de KCI                                                                                                                                                                                               |  | 20 mL = 20 mmol K <sup>+</sup><br>50 mL = 50 mmol K <sup>+</sup>                                                                                                                                                                                         |  | 1 mmol K <sup>+</sup> / mL<br>1 mmol K <sup>+</sup> / mL                                                                                                                    |  |
| В                                                          | SODIUM chlorure Bichsel 11.7%; 117g/L (10 mL)<br>SODIUM chlorure Amino 20%; 200 g/L (10 mL)                                                                                                               |       | 1.17 g de NaCl<br>2 g de NaCl                                                                                                                                                                                               |  | 10 mL = 20 mmol Na <sup>+</sup><br>10 mL = 34 mmol Na <sup>+</sup>                                                                                                                                                                                       |  | 2 mmol Na <sup>+</sup> / mL<br>3.4 mmol Na <sup>+</sup> / mL                                                                                                                |  |



# Afin de prévenir les erreurs et confusions, mieux vaut prescrire en unités standardisées :

- ✓ Exprimer les doses en général en milligrammes = mg
- ✓ Dans certaines situations, expression en microgrammes = mcg = microg ne pas utiliser des gamma  $(\gamma)$
- ✓ Pour les élecrolytes, expression en mmol au lieu des mgq
- ✓ Pour les volumes, parler en mL au lieu des ∞ ou nombre de gouttes

### UNITES DE MASSE ET DE VOLUME

| Unités de masse                                                     |                |                  | Unités de volume  |            |  |
|---------------------------------------------------------------------|----------------|------------------|-------------------|------------|--|
| 1 kilogramme (kg) = 1000 g                                          | = 1 000 000 mg | 10³              | 1kilolitre (kL)   | = 1000 L   |  |
| 1 gramme (g) = 1 g                                                  | = 1 000 mg     | 10º              | 1 litre (L)       | = 1000 mL  |  |
| 1 <b>déci</b> gramme ( <b>d</b> g) = 0.1 g                          | = 100 mg       | 10 <sup>-1</sup> | 1 décilitre (dL)  | = 100 mL   |  |
| 1 <b>centi</b> gramme ( <b>c</b> g) = 0.01 g                        | = 10 mg        | 10-2             | 1 centilitre (cL) | = 10 mL    |  |
| 1 <b>milli</b> gramme ( <b>m</b> g) = 0.001 g                       | = 1 mg         | 10 <sup>-3</sup> | 1 millilitre (mL) | = 1 mL     |  |
| 1 <b>micro</b> gramme ( <b>μg</b> ) ou ( <b>mc</b> g) = 0.000 001 g | = 0.001 mg     | 10-6             | 1 microlitre (µL) | = 0.001 mL |  |
| 1 <b>nano</b> gramme ( <b>n</b> g) = 0.000 000 001 g                | = 0.000 001 mg | 10 <sup>-9</sup> |                   |            |  |

#### CORRESPONDANCES ENTRE LES UNITES DE VOLUME ET DE CONTENANCE

| Correspondances entre les unités de volume, de contenance et masse (masse valable pour de l'eau) |                   |                     |                      |                      |                        |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|-------------------|---------------------|----------------------|----------------------|------------------------|--|--|--|--|--|--|
| 1 m <sup>3</sup>                                                                                 | 1 dm <sup>3</sup> |                     |                      | 1 cm³ (ancien : cc)  | 1 mm³                  |  |  |  |  |  |  |
| 1 kL<br>(kilolitre)                                                                              | 1 L<br>(Litre)    | 1 dL<br>(décilitre) | 1 cL<br>(centilitre) | 1 mL<br>(millilitre) | = 1 µL<br>(microlitre) |  |  |  |  |  |  |
| 1000 L                                                                                           | 1 L               | 0.1 L               | 0.01 L               | 0.001 L              | 0.000001 L             |  |  |  |  |  |  |
|                                                                                                  | 1000 g            | 100g                | 10g                  | 1g                   | 0.001 mg               |  |  |  |  |  |  |

#### **UNITES INTERNATIONALES (UI)**

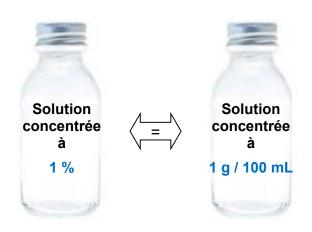
UI = Unités internationales (français) = IE Internationale Einheit (allemand) = IU International Unit (anglais)

Les doses de certains médicaments sont exprimées en termes d'activité/d'effet biologique, définis en **unités internationales (UI)**, standardisées au niveau mondial. L'OMS¹ fournit une préparation de référence contenant un **nombre arbitraire** d'UI pour chacun de ces médicaments et spécifie une procédure biologique pour comparer les autres préparations du marché: le même effet biologique mesuré contient alors le même nombre d'UI. Dans ce cas-ci, prescrire en UI est alors indispensable.

Ex : enzymes (urokinase), facteurs de coagulation, EPO, héparines, vitamine D, insulines, ou certains antibiotiques (benzylpénicilline)

<sup>&</sup>lt;sup>1</sup> http://www.who.int/biologicals/reference preparations/en/

Assistance Pharmaceutique: No tél. interne 31080



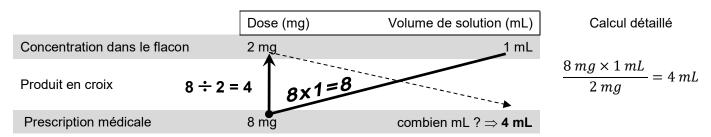

#### **EXPRESSION DES CONCENTRATIONS**

Lorsque l'on parle de concentration, on considère la masse de principe actif contenu dans un volume, notamment des mg/mL.

Parfois, la concentration des médicaments est encore exprimée en pourcentage (comme le magnésium sulfate 20%, soit 200mg/mL).

Une solution concentrée à 1% contient 1 g de principe actif (PA) pour 100 mL de solution, soit 10 mg/mL.

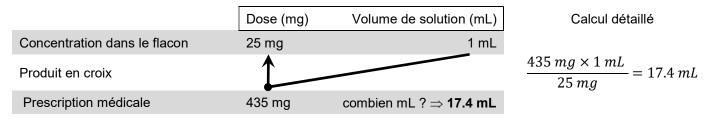



#### 1 g « pour cent » mL

1g ou 1000 mg de PA ⇔ 100 mL Combien dans 1 mL?  $1000 \text{ mg} \div 100 \text{ mL} = 10 \text{ mg/mL}$ 0.01 g ou 10 mg de PA \$\to\$ 1 mL

Une solution à 1% contient 10 mg par mL Une solution à 10% contient 100 mg par mL Une solution à 50% contient 500 mg par mL

## **CALCUL DE DOSES ; LE PRODUIT EN CROIX**


Exemple 1. Vous devez administrer 8 mg de principe actif à partir d'une solution concentrée à 0.2 %. Calcul préalable : 0.2 % ⇔ 0.2 g/100 mL ⇔ 200 mg/100mL ⇔ concentration dans le flacon = 2 mg/mL



On multiplie les nombres de la diagonale complète et l'on divise par le troisième nombre.

Exemple 2. Vous devez administrer 435 mg de bevacizumab (Avastin®) à votre patiente. Votre stock comprend 1 flacon de 400 mg (16mL) et 1 flacon de 100 mg (4mL). Comment procéder ?

Calcul de la concentration du premier flacon : 400 mg ÷ 16 mL = 25 mg/mL Calcul de la concentration du second flacon : 100 mg ÷ 4 mL = 25 mg/mL



La concentration est identique entre les deux flacons disponibles. Vous pouvez prélever dans une même seringue 17.5 mL (arrondi) pour préparer la dose totale.